Welcome bbaacckk to
CS439H!

No quiz everybody say

Stress

e 439H is not an easy class

o Lots of new material

o Unfamiliar programming environments

o Fast, often relentless pace
e Struggling in this course is normal

o There will be times you won’t know the answer or solution

o This is expected - we want everyone to succeed, but the only way we can help is if you ask for it
e If you find yourself overwhelmed or spending more time on this class than you

think you should be, please reach out to Dr. Gheith or the TAs

o We can help out as far as the class goes
o We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

How is p7 going?

for (int 1 = 9; i <

o . that’s a thing?
NUM_STUDENTS) 1++) { . I’ve heard/talked about it
int id = fork; . Cloned the project.
: : . Looked through the starter code.
>
if (id @) . Started planning/writing code
get_ feedback ()) . Done with at least one part of the
else if (id == 0) project ,
.) . Done with the whole project but
join () , still failing a couple test cases

} . Fully preempting

Question 1

pe

invalid,
missing
rmissions

~ page fault |

C%er3 PD lookup TP pr gookup M

TLB miss

invalid,
missing
permissions

Question 2

Large page sizes

- Flatter tree (less depth)
- Faster lookup times

Segmentation

- Less metadata

Larger virtual address spaces

- Can access more memory

Tiny page sizes

- Reduce fragmentation

Paging

- Less fragmentation

Smaller virtual address spaces

- Faster lookup times

Question 3

Solution: reference counting!

e We didn’t allow you to change argument types
because a one line change from Node* to
Shared<Node> as the argument type would work

e Pass an Atomic<int> (by reference or pointer, it should
be stored on the heap) counting the number of
references to node

e Increment when the go call is scheduled (when node
is captured into the lambda; incrementing inside func()
is too late) and decrement after func()

e Free node when the counter hits O

void decrement(Node* node, Atomic<int>* ref_count){
if(ref_count->add_fetch(-1) == 0){
delete node;
}
}

void func(Node* node, int i, Atomic<int>* ref_count) {
if (i < 0) return;

ref_count->add_fetch(1);
go([node, i] { func(node, i - 1); decrement(node, ref_count); });
if (random_bool()) {

ref_count->add_fetch(1);

go([node, i] { func(node, i - 1); decrement(node, ref_count); })
2
}

void kernelMain() {
// ...do work ...
Node* node = // ... get node from the filesystem ...
Atomic<int>* ref_count = new Atomic<int>(1);
func(node, random(), ref_count);
// ... do more work ...
decrement(node, ref_count);

Question 4

Two things:

1. Move program to FS
2. Program Rebooting

Move to FS:

Load following into a separate portion of the FS: Stack,Page Directories and Page Table, and registers (that include the IP and SP). Move it back to
user program)

Program Rebooting:

We restore everything that was once saved, and switch to that process.

Note that there needs to be some agreed upon saving/restoring convention.

P/

Context Switching (Turing)

- Remember coroutines?

- Consider how you'd implement yield() as a system call

- Need a mechanism for saving the state of a process
- and a mechanism for restoring the state of a process
- Then you can save the state, and schedule something to switch back into the process at a later

point
- In p6, we just used switchToUser() to "restore" the PC/stack pointer in fork

- What else do you have to save & restore now?

yield() - Optional, but we really recommend it

e void yield() (Syscall number 998)

o Suspends the current process and resumes it at some future point
o (by putting something on the event queue to resume it)

e Start here - it's the simplest context switching operation

e Add yield calls to p6 t0O's spin loops, and you should pass it with QEMU_SMP=1
(one core)

e Implementing this lets you test your context switching, making preemption
much easier to debug (because you’ll know the context switching works)

e Once you have yield, sem_down is simple to implement

Preemption

e apitHandler()
o Called every time the PIT triggers a timer interrupt (approximately once every ms)
o By default, just increments Jiffies
o We can make it preempt the current process (if you're in user-mode) and switch contexts
o This looks a bit like yield()... (but not exactly)

join()

e int join()
o Blocks the calling process until the most recently created child exits
o Returns the exit code from the child
m Exit code is the argument passed into exit
m 139 if the child terminated because of an unhandled page fault
o Returns -1if the process has no remaining children

e Each process maintains a LIFO stack of children
e When a process forks, the child is added to the parent’s stack of children

Semaphores, again

e unsigned int sem(unsigned int n)
o Creates a semaphore initialized to a count of n, and returns a corresponding number to refer to
the semaphore
e void up(unsigned int sem)

e void down(unsigned int sem)
o Performs the corresponding operation on the corresponding semaphore
o For this project’s tests, sem must be a value returned from the sem syscall
o down will block the user process until up is called (like normal semaphores)

Questions?

*** pon't panic

*dk 00003$33$33$33$3%%0000
*¥ ¥ 003333833333583333583333850

* %% 003333333333333333333333535353%30 o8 3% o3
*¥ ¥ 0 $ oo 083333583333588333358333335833335888%0 $3 33 $303
*** 00 $ ¢ "8 0833358333 3335833333553 3335833350 $3303%0%
x "g444E0g 0833335333 33358333358 33358333850 33533338
*x*x 444444 33358333358 33358333358 $335833335583333583333%

x% 4444484444448 4445884¢ 3335833333553 $3358333385888 """$3%

* kK GGG e e EESSeEEE384E853398858333385833335533335583 "$$8
*kk 338 03333583333358333858833385833338583333858333855833% "$$%0
* kK 033" $83383338333833383358335833583353335833583553835583% $$%0

*xx 333399999938 $33333333333999999995555533333333% 388t

Kokk _mm $388 "$333343583383855555535855558" 0333
kb "$3%0 "3 39833335393398388" 33" 333
LN $3%0 "g3"" 333838 """ 03$3%
* %Kk $3%%0 03838"
* %k "$$$%0 03$%$$%%0"$$%%0 03%$%%

* % "$$%%$%00 ""$4$%0%8%%%0 08$%8""
Kk % nnggddd0000 "$850845454548 "

* k¥ ""43%8%00 $$39339%$%$
* %k "nnngdees$$$38$9%

%k $3$933838$$%$
* 3k % 3383338383 "

L "gggmmm"

