
Welcome bbaacckk to
CS439H!

No quiz everybody say !

Stress

● 439H is not an easy class
○ Lots of new material
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer or solution
○ This is expected - we want everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overwhelmed or spending more time on this class than you
think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

for (int i = 0; i <
NUM_STUDENTS; i++) {
 int id = fork;
 if (id > 0)
 get_feedback(i);
 else if (id == 0)
 join();
}

How is p7 going?

A. thatʼs a thing?
B. Iʼve heard/talked about it
C. Cloned the project.
D. Looked through the starter code.
E. Started planning/writing code
F. Done with at least one part of the

project
G. Done with the whole project but

still failing a couple test cases
H. Fully preempting

Question 1

input VA

page offset

VPN

TLB lookup

%cr3 PD lookup PT lookup
successful lookup

PPN

successful lookup

output PA

TLB hit

TLB miss

page fault
invalid,
missing

permissions

invalid,
missing
permissions

Question 2

Large page sizes

- Flatter tree (less depth)
- Faster lookup times

Segmentation

- Less metadata

Larger virtual address spaces

- Can access more memory

Tiny page sizes

- Reduce fragmentation

Paging

- Less fragmentation

Smaller virtual address spaces

- Faster lookup times

Question 3

Solution: reference counting!

● We didn’t allow you to change argument types
because a one line change from Node* to
Shared<Node> as the argument type would work

● Pass an Atomic<int> (by reference or pointer, it should
be stored on the heap) counting the number of
references to node

● Increment when the go call is scheduled (when node
is captured into the lambda; incrementing inside func()
is too late) and decrement after func()

● Free node when the counter hits 0

void decrement(Node* node, Atomic<int>* ref_count){
 if(ref_count->add_fetch(-1) == 0){
 delete node;
 }
}

void func(Node* node, int i, Atomic<int>* ref_count) {
 if (i < 0) return;

 ref_count->add_fetch(1);
 go([node, i] { func(node, i - 1); decrement(node, ref_count); });
 if (random_bool()) {
 ref_count->add_fetch(1);
 go([node, i] { func(node, i - 1); decrement(node, ref_count); })
 };
}

void kernelMain() {
 // ... do work ...
 Node* node = // ... get node from the filesystem …
 Atomic<int>* ref_count = new Atomic<int>(1);
 func(node, random(), ref_count);
 // ... do more work ...
 decrement(node, ref_count);
}

Question 4

Two things:

1. Move program to FS
2. Program Rebooting

Move to FS:

Load following into a separate portion of the FS: Stack,Page Directories and Page Table, and registers (that include the IP and SP). Move it back to
user program)

Program Rebooting:

We restore everything that was once saved, and switch to that process.

Note that there needs to be some agreed upon saving/restoring convention.

P7

Context Switching (Turing)

- Remember coroutines?
- Consider how you'd implement yield() as a system call

- Need a mechanism for saving the state of a process
- and a mechanism for restoring the state of a process
- Then you can save the state, and schedule something to switch back into the process at a later

point

- In p6, we just used switchToUser() to "restore" the PC/stack pointer in fork
- What else do you have to save & restore now?

yield() - Optional, but we really recommend it

● void yield() (Syscall number 998)
○ Suspends the current process and resumes it at some future point
○ (by putting something on the event queue to resume it)

● Start here - it's the simplest context switching operation
● Add yield calls to p6 t0's spin loops, and you should pass it with QEMU_SMP=1

(one core)
● Implementing this lets you test your context switching, making preemption

much easier to debug (because you’ll know the context switching works)
● Once you have yield, sem_down is simple to implement

Preemption

● apitHandler()
○ Called every time the PIT triggers a timer interrupt (approximately once every ms)
○ By default, just increments Jiffies
○ We can make it preempt the current process (if you're in user-mode) and switch contexts
○ This looks a bit like yield()... (but not exactly)

join()

● int join()
○ Blocks the calling process until the most recently created child exits
○ Returns the exit code from the child

■ Exit code is the argument passed into exit
■ 139 if the child terminated because of an unhandled page fault

○ Returns -1 if the process has no remaining children

● Each process maintains a LIFO stack of children
● When a process forks, the child is added to the parent’s stack of children

Semaphores, again

● unsigned int sem(unsigned int n)
○ Creates a semaphore initialized to a count of n, and returns a corresponding number to refer to

the semaphore

● void up(unsigned int sem)
● void down(unsigned int sem)

○ Performs the corresponding operation on the corresponding semaphore
○ For this project’s tests, sem must be a value returned from the sem syscall
○ down will block the user process until up is called (like normal semaphores)

Questions?

*** Don't panic

*** oooo$$$$$$$$$$$$oooo

*** oo$$$$$$$$$$$$$$$$$$$$$$$$o

*** oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$

*** o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$

*** oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$

*** "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$

*** $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$

*** $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$

*** "$$$""""$$$ "$$$

*** $$$ o$$ "$$$o

*** o$$" $$$ $$$o

*** $$$ $$$" "$$$$$$ooooo$$$$o

*** o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$

*** $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""

*** """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$

*** "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$

*** $$$o "$$""$$$$$$"""" o$$$

*** $$$$o o$$$"

*** "$$$$o o$$$$$$o"$$$$o o$$$$

*** "$$$$$oo ""$$$$o$$$$$o o$$$$""

*** ""$$$$$oooo "$$$o$$$$$$$$$"""

*** ""$$$$$$$oo $$$$$$$$$$

*** """"$$$$$$$$$$$

*** $$$$$$$$$$$$

*** $$$$$$$$$$"

*** "$$$""""

